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Abstract. We present a generating function formalism for growth processes in general, 
and introduce a new cell renormalisation scheme. As examples, we treat the ‘true’ 
self-avoiding walk and the Eden process (or growing animals) in two and three dimensions 
using small cells. The results in both cases indicate a substantial increase in the fractal 
dimension D compared with their equilibrium counterparts. The case of the Eden process 
may, however, suggest a peculiar convergence behaviour as the cell size b tends to infinity. 

1. Introduction 

Various models of kinetic aggregation have been studied intensely in recent years due 
to their presumed relevance to a variety of physical and biological phenomena such 
as the formation of branched polymers and gels (for recent computer simulations, see 
Herrmann e? al (1982), Rushton et al (1983) and references therein), coagulation of 
smoke particles (Witten and Sander 1981, 1983, Meakin 1983a, b, and references 
therein), and the growth of tumours (Eden 1961, Peters e? al 1979). These studies 
have found intrinsic differences in the nature of kinetic aggregates compared with their 
supposed equilibrium counterparts (when they exist). While these aggregates appear 
to have scale invariance as the size N tends to infinity similarly to the equilibrium 
clusters at criticality, their structures seem to be quantitatively different. 

One important structural characteristic is given by the dependence of the root-mean- 
square radius of gyration 6 = (RL)’’’ on the size N. For aggregates with scale invari- 
ance, .$ grows as .$ - N” where v is the analogue of the Flory exponent for the correlation 
length in an equilibrium problem, and D = 1/ v is the ‘fractal’ dimension (Mandelbrot 
1982) of the aggregate. To illustrate the kind of quantitative differences, let us consider 
the case of the Eden process versus its equilibrium counterpart, random animals. In 
the Eden model, one starts from a seed site on a lattice and successively occupies a 
randomly chosen perimeter site, one at a time. In contrast, random animals are, simply, 
randomly shaped, connected clusters of sites or bonds on a lattice. The fractal 
dimension D of the Eden process is expected to be equal to the lattice dimensionality 
d, i.e. the clusters are compact (Peters e? a1 1979). For random animals, D = 1.54 in 
d = 2 (cf Family 1983) and D = 2 in d = 3 (Parisi and Sourlas 1980). 

While the examples discussed above produce branched objects in general, there 
are other classes of growth processes that are in some sense intrinsically one- 
dimensional; these are called walks. The best known example is of course the random 
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walk, which, considered as a ‘cluster’, has D = 2 in all dimensions. The random walk 
is Markovian as a growth process and focal if viewed as an equilibrium object; thus 
for this special walk, there is no difference between static and growth models. 

However, it is now known (Amit et a1 1983) that major differences exist for a 
physically important class of walks called self-avoiding walks. The static self-avoiding 
‘walk’ (SAW) considers random chain configurations without self-intersections, while 
the kinetic or ‘true’ self-avoiding walk (TSAW) is a growing walk with each step taken 
randomly but attempting to avoid self-intersections as much as possible. TSAW is thus 
a process which grows without ever dying out; as a result, self-intersections are possible 
though not common. SAW has the fractal dimension D z:, 3 (or v = :, $) in d = 2,3 
respectively (see e.g. de Gennes 1979), with the upper marginal dimension of d, = 4; 
however, Amit et a1 (1983) showed that d ,  = 2 for TSAW and thus it behaves much 
like the random walk, with D = 2, for all d > 2! For both models, there are logarithmic 
corrections at d = d,. 

Although there have been real-space renomalisation schemes that effectively deal 
with static versions of both branched aggregates and ‘walk’ configurations (Stanley et 
af 1982 and references therein), there has been little systematic method for growth 
processes (Gould et a1 1983). However, their method can be improved in a number 
of respects. Below, we shall illustrate our renormalisation method by its application 
to TSAW and the Eden model. This is both because these models allow simple 
one-parameter approaches and because we can check the reliability of the general 
method by comparing the results with those of analytic (TSAW) or Monte Carlo (Eden) 
methods. 

2. Generating functions 

To illustrate our approach, it is convenient first to review the conventional way to 
study lattice animals and (static) ‘walk’ configurations. Generating functions are 
introduced there as a means to convert the ‘canonical’ problem into one of grand 
canonical ensemble with fugacity K :  let CN be the number of animals of N sites 
containing the origin (or of ‘walks’ of N steps starting at the origin). Then the (static) 
generating function is given by 

N 

Since the asymptotic behaviour of C, for these problems is typically 

C N - ~ ” N - ’ ,  N + m ,  (2) 
where p, 0 are constants appropriate for the problem, we may conclude for the singular 
behaviour 

[S(K)Is- (K,-K)’-’ (3) 
with Kc= 1/p. The numerical values of 0 are, e.g., 1 for random animals in d = 3 
(Parisi and Sourlas 1981) and about -0.16 for the SAW in dz .3  (Le Guillou and 
Zinn-Justin 1980). We can then write for the ‘average’ size of the objects 

( N )  = ( NC,K N, / ( CNK ,) - ( K,  - K ) - I  
N c N 5 

(4) 
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irrespective of 8. Similarly, more detailed information (than CN’s) leads to the 
root-mean-square radius of gyration 5, 

5 - ( K , - K ) - ” ,  

5 - (N)”  or ( N )  - tD 
and from (4) and ( 5 ) ’  we write 

with D = 1/  Y as mentioned before. 
Let us now take, as the simplest example of ‘walk’ configurations, the random 

walk. Then, in (2),  we have p = z (the coordination number of the lattice) and 8 = 0. 
Thus for this case S ( K ) = z K / ( l - z K ) ,  and if we relabel z K + K ,  S ( K ) =  
K / ( 1  - K )  = X N  K N  simply. Since we can also consider the random walk to be a 
growth process, this generating function should also be appropriate for a growth 
process. In this case, the interpretation of K should be that it is the total weight placed 
on taking a step (any step). Thus, the probability of taking a step in a given direction 
is l / r ,  and the weight associated with such a step is K / z ;  since there are z possible 
directions, the weight of one step will total K. 

Indeed, in general for a process with objects growing with varying probabilities for 
particular steps, there is no other sensible way to assign a fugacity than to assign K 
to the total event of taking one step at all. Since in perpetual growth processes there 
are just as many n-step processes as one-step ones, the value K = 1 arises naturally 
as a ‘critical’ point. Therefore, we propose to take the (‘growth’) generating function 
for all growth processes to be 

G ( K )  =C K N  = K / (  1 - K ) .  (7) 
N 

Simple though equation (7) may be, it does not by itself allow the calculation of D ;  
we still need to calculate the radius of gyration 5 (cf equation (5)) consistent with the 
statistical weight as given in (7).  This is illustrated for TSAW and the Eden model below. 

3. Renormalisation of TSAW 

In order to calculate D, we resort to simple cell renormalisation which approximately 
conserves the generating function under rescaling by a linear factor b. First we present 
the case of TSAWS with small b. Following de Queiroz and Chaves (1980) and Family 
(1980), we take a bd cell, and use a corner rule to calculate recursion relations; i.e. 
TSAWS starting from the origin at the corner (cf figure 1) and traversing the cell in a 
given direction contribute to the renormalised fugacity K‘.  

Thus, for example, on a 2 X 2 cell, the walks that contribute to K’ are exactly the same 
as those for static SAWS (de Queiroz and Chaves 1980 and Family 1980); however, their 
weights are entirely different (cf figure 1): 

(8) 1 ~ 1  = ~ ~ 2 + 1 ~ 3 + 1 ~ 4  
2 6 12 . 

These weights arise from calculating the relative probability of the spanning processes 
over all processes of a given number of steps. Hence we obtain K* = 1 and the 
eigenvalue A =$  computed in the usual manner as the derivative dK’/dKIK*, which 
yields v = 0.707 and D = 1.415 in comparison with the similar 2 X 2 result of V = 0.715 
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Fieure 1. Shown in ( a ) - ( d )  are the spannine configurations of TSAWS in a - I I -  

2 x 2  cell which renormalise to the one in ( e ) .  The relative probabilities of these walks 
among all TSAWS of the same length (in the quadrant containing the cell) are a for ( a )  
and for each of ( b ) ,  ( c )  and ( d ) .  

and b = 1.40 for static SAWS. Even though this estimate of v is not very close to 4 
expected from analytic work (Amit er a1 1983, Obukhov’and Peliti 1983), this could 
be a reflection of the expected logarithmic correction at d = 2. Our 3 x 3 recursion 
relation indicates a slight increase of D in contrast to the slightly decreasing trend for 
b in the case of SAWS. Using the rule that self-intersection is allowed only when a 
walk is surrounded by its own previous steps within the cell (this occurs twice for 
3 X 3), the recursion relation for 3 X 3 is 

(9) i K ’  = $K 3 + 2 K 4  7 2  + 4 27K5+&K 6+&K7+&Kx +&Ky+&K ‘(I .  

This leads to K * =  1.01 (away from 11, A ~ 4 . 7 5 ,  and ~ 2 0 . 7 0 5 ,  D =  1.419. 
For the d = 3 case, our recursion relation for 2X2X2 cell reads 

(10) fK ’ = 4K2 + $K 3 + ‘_‘K4 + 2 K 5  + U K  + 
i8n I oxo 8640 1 2 9 6 0 ~  +&M8. 

This gives K * = 1, A = 3.25, Y = 0.588 and D = 1.70 reasonably close to the expected 
values Y = 4, D = 2. However, these values are also close to those of the SAW problem, 
and the real test must await the results of large cell calculations. In the above 
calculations, the deviations of K * from unity arise from the finite probability allowed 
for the escape of the walk away from the quadrant containing the cell when all other 
avenues are blocked. 

4. Renormalisation of growing animals 

The renormalisation of growing animals proceeds essentially along the same lines. 
One apparent concern here is the basic requirement for a cell renormalisation, i.e. 
that of the equivalence of all the cells covering the lattice. Upon further consideration, 
however, this turns out not to be a problem. The apparent ‘difficulty’ rises from the 
fact that, at any given instance (in units of the time to  add one site), growth is occcuring 
only at the periphery of the animal and that a given perimeter site becomes occupied 
with a progressively smaller probability as the animal grows larger. (We note that 
such a property is shared by the diffusion limited aggregation model of Witten and 
Sander (1981, 1983) as well.) This is, however, not a real problem since we are 
interested in a purely spatial property, and thus our rescaling must be spatiaIly uniform. 
Spatially uniform rescaling corresponds, e.g., to the simultaneous rescaling of cells 
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whose growth has taken place at various different times, and to the treatment of cells 
further away from the seed as if they were grown at a much greater rate. Not only 
does all of this not interfere with our aim of calculating spatial properties, but it is in 
fact essential. 

In practice, we again employ a ‘corner rule’ in which a cell is counted occupied if 
an animal grown from a corner seed spans the cell in all directions (corresponding to 
‘r2’ and ‘r3’ for square and simple cubic lattices respectively, of Family (1983); see 
also Reynolds et a1 (1980)). For 2 x 2 cell on the square lattice, we thus obtain 

K ’ =  K 3 + K 4 ,  (1 1) 

i.e. all three- and four-site processes span the cell in both directions. This recursion 
relation results in K* = 0.755, A = 3.43, and v = 0.562, D = 1.778. These estimates 
are considerably different from the similar 2 x 2 results €or the (static) random animals 
(Family 1983), 510.604, B 1.66, and already relatively close to the compact cluster 
values of v = i, D = 2. 

We may remark at this point on the difference between our recursion relation ( 1  1) 
and that of Gould et a1 (1983): 

K’ = 4K3 -!- 4K4. (12) 

Gould er a1 do not make clear what their generating function is and their procedure 
consists of counting the number of growth processes that span the cell. Thus, they 
implicitly weight each process of the same size equally. While this assumption is correct 
at the level of 2 X 2, as we shall see, it breaks down already for 3 X 3 cells. In addition, 
since the number of processes are counted, terms of higher order in K naturally occur 
with much larger coefficients. This contrasts with the original problem in which there 
are equal numbers of animals of all sizes in the ‘ensemble’, leading to a generating 
function with a singularity at K = 1. 

Now for a 3 X 3 cell, we obtain 

which leads to K* = 0.797, A = 7.03, and v = 0.563, D = 1.776. Thus, the estimate of 
D has a slightly larger deviation from D = d = 2 than for 2 X 2 cells. While this is 
somewhat discouraging, such non-monotonicity was already encountered in Monte 
Carlo simulations (Peters et a1 1979). 

The coefficients C, are obtained, as before, by the relative probability of those 
growth processes of N-site animals that satisfy the spanning rule. The calculation of 
these weights is normally quite non-trivial; however, for small cells the task is greatly 
simplified by looking at  (1 - C,). In the 3 X 3 case, no processes of seven or more 
sites fail to span, leading to C, = C8 = C, = 1, and (1 - C,) and (1 - c6) are each obtained 
as the sum of just 48 terms (cf figure 2). 

For d = 3, the result from a 2 X 2 X 2 cell on the simple cubic lattice is 

K ’ = ~ K 4 + K s + K K + K 7 + K K H .  (14) 

This leads to K *  = 0.723, A = 5.51, and v = 0.406, D = 2.46, still fairly far from compact 
clusters ( Y = f, D = d = 3). In comparison, for the random animal case one finds (Family 
1983) tg0 .459 ,  B 3 2 . 1 8  on a 2 X 2 X 2  cell. 



432 H Nakanishi and F Family 

0 0 0  0 . 0  0 . 0  

0 . 0  0 0 0  0 . .  

0 . 0  0 . 0  0 . .  
101 ibl I C  ! 

Figure 2. Just three of the ten non-spanning configurations of the five-site animals in a 
3 x 3 cell are shown. For the Eden model, we must consider the relative probability of 
each growth process among those of the same size. Thus, for (a), there is only one way 
to grow it from the corner seed and the probability is 4 x $  x $ x f = &. For ( b ) ,  there are  
four ways to grow it with a total probability of h; for (c) ,  four ways to grow it with total 
probability of &. The remaining seven configurations (not shown) have 39 ways to grow 
among them with varying probabilities totalling m. 

Our final comment concerns the peculiar limiting property of our recursion relations 
for the Eden process. As remarked already, on a bd cell, all bd-’  terms CN with 
N >  b d - b d - ’  are equal to 1. Thus, the eigenvalue A b  satisfies 

Hence, as b -+ 03, we have 
b2d-1K*bd 

Let 

K * - 1 -f( b )  

with f( b )  + 0. Normally, we would expect f (  b )  - b-”” - b-” with the true D ;  however, 
since K* is raised to bd in (16), even asymptotically small deviation of f ( b )  from b-d 
is important here. 

In fact, if we let f ( b )  - b-” with D = d (as expected for the Eden process), then 
the factor K*bd  -+ O(1) in (16), and v i 1  = (In Ab)/ln b 2 2d - 1, which is in contradiction 
with the assumption. This appears to suggest either a fault in the construction of our 
renormalisation scheme or one in our assumption of f( b )  - b-” with D = d. Our point 
of view is that, because of the sensitivity of the rate of convergence of K* to 1 here, 
we must allow for a correction of the type 

f (  b )  - (In b)xb-d.  

Note that this may be due either to a real logarithmic correction in D (unlikely from 
the Monte Carlo data of Peters et a1 (1979)) or, if we take f ( b )  - b-’”’b where vb  is 
the bd cell estimate of v for self-consistency, then to a peculiarly slow convergence 
of - d - -x In In b/ln b to the limit 1 / v  = D= d. At any rate, for (18) to be 
compatible with D = d in a sensible way, we must still have 

must win over the prefactor bZd-’ in (16) to render this contribution to A b  (from 
CN with large N )  negligible in the large b limit. 
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5. Summary 

In summary, we have proposed a generating function for all growth processes that 
start from a seed site on a lattice, and constructed a new cell renormalisation 
scheme consistent with this generating function. This scheme is illustrated for TSAWS 

and the Eden model where the results are in good agreement with analytic and Monte 
Carlo expectations considering the small cell sizes employed. Moreover, since our 
method is based on relative probabilities of spanning processes, it is fairly straightfor- 
ward to  extend it to much larger cell sizes by using Monte Carlo techniques to evaluate 
C,. Our preliminary results with relatively small cell sizes already indicate the reversal 
of the slightly decreasing trend of D found for b = 2 and 3 for the Eden process. This 
program is now in progress, and results will be reported subsequently. 
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